Soft Robotic Applications Using Dinoflagellate Bioluminescence

A collaboration with Prof. Shengqiang Cai in the Department of Mechanical and Aerospace Engineering at UCSD has led to the development of soft devices containing bioluminescent dinoflagellates that glow in the dark when experiencing mechanical stress, such as being squished, stretched, twisted or bent. The devices do not require any electronics to light up, making them an ideal choice for building soft robots that explore the deep sea and other dark environments.

Visit for a video highlight and article about the study.

The study was published in Nature Communications, where you can view and download the paper and supplementary materials, including videos.

Study abstract:

Biohybrid is a newly emerging and promising approach to construct soft robotics and soft machines with novel functions, high energy efficiency, great adaptivity and intelligence. Despite many unique advantages of biohybrid systems, it is well known that most biohybrid systems have a relatively short lifetime, require complex fabrication process, and only remain functional with careful maintenance. Herein, we introduce a simple method to create a highly robust and power-free soft biohybrid mechanoluminescence, by encapsulating dinoflagellates, bioluminescent unicellular marine algae, into soft elastomeric chambers. The dinoflagellates retain their intrinsic bioluminescence, which is a near-instantaneous light response to mechanical forces. We demonstrate the robustness of various geometries of biohybrid mechanoluminescent devices, as well as potential applications such as visualizing external mechanical perturbations, deformation-induced illumination, and optical signaling in a dark environment. Our biohybrid mechanoluminescent devices are ultra-sensitive with fast response time and can maintain their light emission capability for weeks without special maintenance.